研究業績

原著論文および総説(*責任著者)

1. Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

M. Sasaki* and T. Kobayashi*

bioRxiv doi: https://doi.org/10.1101/2023.12.21.572944 (2023).


2. Acidic growth conditions stabilize the ribosomal RNA gene cluster and extend lifespan through noncoding transcription repression.

Y. Hasegawa, H. Ooka, T. Wakatsuki, M. Sasaki, A. Yamamoto and T. Kobayashi*

Genes to Cells online ahead of print (2023).


3. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks.

M. Sasaki* and T. Kobayashi

Genes & Genetic Systems 98, 3, 103-119 (2023).


4. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters.

M. Yokoyama, M. Sasaki* and T. Kobayashi*

Cell Reports 42, 1, 111944 (2023).


5. The S-phase cyclin Clb5 promotes rRNA gene (rDNA) stability by maintaining replication initiation efficiency in rDNA.

M. Goto, M. Sasaki* and T. Kobayashi*

Molecular and Cellular Biology 41, 5, e00324-20 (2021).


6. Gel electrophoresis analysis of rDNA instability in Saccharomyces cerevisiae.

M. Sasaki and T. Kobayashi*

Methods in Molecular Biology 2153, 405-425 (2021).


7. The CCR4-NOT complex maintains stability and transcription of rRNA genes by repressing antisense transcripts.

S. Hosoyamada, M. Sasaki and T. Kobayashi*

Molecular and Cellular Biology 40, 1, e00320-19 (2019).


8. Defects in the NuA4 acetyltransferase complex increase stability of the ribosomal RNA gene and extend replicative lifespan.

T. Wakatsuki, M. Sasaki and T. Kobayashi*

Genes & Genetic Systems 94, 5, 197-206 (2019).


9. Ctf4 prevents genome rearrangements by suppressing DNA double-strand break formation and its end resection at arrested replication forks.

M. Sasaki and T. Kobayashi*

Molecular Cell 66, 4, 533-545 (2017).


10. Ribosomal DNA stability is supported by many 'buffer genes'-introduction to the Yeast rDNA Stability Database.

T. Kobayashi* and M. Sasaki

FEMS Yeast Research 17, 1 (2017).


11. レプリソームの構成タンパク質であるCtf4は複製が阻害された際に生じるDNA2本鎖切断の修復に重要である

M. Sasaki and T. Kobayashi*

First Author's、ライフサイエンス新着論文レビュー (2017).


12. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.

K. Saka, A. Takahashi, M. Sasaki and T. Kobayashi*

Nucleic Acids Research 44, 9, 4211-4221 (2016).


13. Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome.

K. R. Fowler, M. Sasaki, N. Milman, S. Keeney and G. R. Smith*

Genome Research 24, 10, 1650-1664 (2014).


14. Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae.

M. Sasaki, S. E. Tischfield, M. van Overbeek and S. Keeney*

PLoS Genetics 9, 8, e1003732 (2013).


15. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation.

J. Pan, M. Sasaki, R. Kniewel, H. Murakami, H. G. Blitzblau, S. E. Tischfield, X. Zhu, M. J. Neale, M. Jasin, N. D. Socci, A. Hochwagen and S. Keeney*

Cell 144, 5, 719-731 (2011).


16. Genome destabilization by homologous recombination in the germ line.

M. Sasaki, J. Lange and S. Keeney*

Nature Reviews Molecular Cell Biology 11, 3, 182-195 (2010).


17. Construction of an additional metal-binding site in human metallothionein-2.

M. Toyama, M. Sasaki, N. Hirayama, Y. Murooka and M. Yamashita*

Journal of Bioscience and Bioengineering 101, 4, 354?360 (2006).